Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow

نویسنده

  • Marcus Herrmann
چکیده

This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force refined level set grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interface projected curvature evaluation is used to ensure the stable and accurate treatment of surface tension forces even on small scales. Broken off, small scale nearly spherical drops are transferred into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization. The numerical method is applied to the simulation of the primary atomization region of a turbulent liquid jet q 6.6, We 330, Re 14,000 injected into a gaseous crossflow Re 570,000 , analyzed experimentally by Brown and McDonell (2006, “Near Field Behavior of a Liquid Jet in a Crossflow,” ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems). The simulations take the actual geometry of the injector into account. Grid converged simulation results of the jet penetration agree well with experimentally obtained correlations. Both column/bag breakup and shear/ligament breakup modes can be observed on the liquid jet. A grid refinement study shows that on the finest employed grids (flow solver 64 points per injector diameter, level set solver 128 points per injector diameter), grid converged drop sizes are achieved for drops as small as one-hundredth the size of the injector diameter. DOI: 10.1115/1.4000148

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GTP-09-1151 Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow

This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force Refined Level Set Grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interf...

متن کامل

Detailed simulations of primary breakup of turbulent liquid jets in crossflow

The problem of breakup of a liquid fuel in a crossflow finds relevance in applications such as lean premixed prevaporized (LPP) ducts, afterburners for gas turbines and combustors for ramjets and scramjets. Combustion efficiency and pollutant formation are directly determined by the efficient mixing of the fuel/air mixture, which is in turn controlled by the breakup of the fuel jet. Liquid jet ...

متن کامل

Role of Weber number in primary breakup of turbulent liquid jets in crossflow

Atomization of liquid fuel controls combustion efficiency and pollutant emissions of internal combustion engines and gas turbines (Lefebvre 1998). The liquid jet in crossflow (LJCF) finds application in lean premixed prevaporized (LPP) ducts, afterburners for gas turbines, and combustors for ramjets and scramjets. This flow configuration, which consists of a turbulent liquid jet injected transv...

متن کامل

Direct Numerical and Large-eddy Simulation of Primary Atomization in Complex Geometries

A detailed understanding of the driving mechanisms behind primary atomization is crucial to the optimization of sprays for efficient combustion in modern propulsion systems. Many challenges are associated with simulating realistic turbulent atomization, such as the multiplicity of length and time scales of the turbulent flow field and gas-liquid interface, discontinuous fluid properties and pre...

متن کامل

High-fidelity Simulation of High Density-Ratio Liquid Jet Atomization in Crossflow with Experimental Validation

Liquid jet atomization in cross-flowing gas is a critical phenomenon in the fuel preparation process and controls combustor efficiency and emissions. Quantitative experimental studies of atomization have been rare due to limited optical access to the near-field dense spray region. High fidelity multiphase flow simulation has shown promise as an alternative approach for scrutinizing the complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010